Über die Synthese spasmolytisch wirksamer Substanzen. 221)

Synthese neuer Benzilsäure-dialkylamino-äthanolester mit zwei verschiedenen Dialkylen

Von J. Klosa

Inhaltsübersicht

Es wird die Synthese neuer basischer Benzilsäureester mit verschiedenen Alkylen in der basischen Alkoholgruppe beschrieben.

Bisher ist eine große Reihe basischer Benzilsäureester beschrieben worden. Die zur Veresterung verwendeten basischen Dialkylaminoalkylanole hatten stets gleiche Alkyle R,

$$R$$
 $N-(CH_2)_n-OH$

also z. B. Methyl, Äthyl usw. Erst vor kurzem beschrieben F. P. Doyle und Mitarb.²) auch solche Ester mit verschiedenen Alkylen, wo also neben R als Methyl auch R_1 als Äthyl gilt, also basische Alkohole der nachstehenden allgemeinen Formel

Wir haben nun eine Reihe neuer Benzilsäureester mit verschiedenen Dialkylaminoalkanolen synthetisiert.

$$C-COOCH_2-CH_2-N$$
 R'
 OH

¹⁾ Josef Klosa, 21. Mitteilung, J. prakt. Chem. 31, 20 (1966).

²) F. D. DOYLE, M. D. MEHTA, R. WARD, J. BAINBRIDGE u. D. M. BROWN, J. med. Chemistry 8, 571 (1965).

Hierbei sollte die Frage geprüft werden, ob sich die pharmakologische Wirkung im negativen oder positiven Sinne ändert, wenn R und R₁ verschieden sind.

Für die Synthese der genannten Ester wurden die Dialkylaminoäthanolamine aus N-Methylaminoäthanol oder N-Äthylaminoäthanol und Alkylhalogeniden, wie Benzylbromid u. ä. durch Kochen der Komponente miteinander erhalten.

Primäre und sekundäre Alkylhalogenide ergaben mit Methyl- (bzw. Alkyl-)-aminoäthanol glatt die erwarteten β -Alkyl- β -methylaminoäthanole, von denen einige mit Thionylchlorid die gut kristallisierenden β -Alkyl- β -methylaminoäthylchlorhydrochloride (XX bis XXX) ergaben. Mit tertiären Alkylhalogeniden gelang die Umsetzung nicht, z. B. tert. Butylchlorid oder tert. Butylbromid.

Die neuen Dialkylaminoalkylanole wurden als Hydrochloride isoliert, die jedoch hygroskopisch waren, so daß sie mit Thionylchlorid ohne weitere Reinigung in die oft gut kristallisierenden Dialkylaminoäthylchlorid-hydrochloride überführt und durch Kochen der freien Basen mit Benzilsäure in Isopropanol verestert wurden (I bis XX):

Auch mit Mandelsäure gelang die Herstellung entsprechender Ester. Diese konnte jedoch nicht kristallin erhalten werden, so daß auf die weitere Untersuchung dieser Mandelsäureester verzichtet wurde.

Die pharmakologische Prüfung der so hergestellten Ester ergab, daß diesen ebenso eine hohe spasmolytische Wirkung zukommt, daß einige jedoch Vorteile besitzen, wie die Benzilsäure-(β -methyl- β -octylaminoäthanol)-ester (XI bis XIII).

Diesen drei Estern fehlt die unliebsame Nebenwirkung der Benzilsäureester: Trockenheit im Nasen-Rachenraum und die mydriatische Wirkung.

Beschreibung der Versuche

Benzilsäure-(B-methyl-B-benzyl-aminoäthyl)-ester (I)

56 ml N-Methylaminoäthanol werden in 150 ml wasserfreiem Benzol mit 40 ml Benzylchlorid eine Stunde unter Rückfluß gekocht. Nach 15 Minuten Kochen trat eine Schichten-

	ester
	Z.
	laminoalk
	ılkyla
	$-\beta$ -dia
-	säure
Tabelle	Benzilsäure- eta -d
_	

	Bemerkungen		farblose Nadeln	tarbiose Biattenen farbiose Nadeln	farblose Nadeln	farblose Blättchen	fettartige farblose Blätt- chen	fettartige farblose Blätt- chen	fettartige Kristalle	fettartige farblose Kri. stalle	fettartige glänzende Blättchen	fettartige schwer trock- nende farblose Kristalle	schwer trocknende farb- lose fettartige Kristalle
ය ස්	Fp. °C		158-160	162 - 164 $168 - 170$	146-148	135 - 137	118-120	172-174	112-114	102—104	120-122	126-128	108-110
-1 \times 2 -1	Analyse in % N	gef.	4,01	4,00	3,64	3,71	3,68	3,72	3,60	3,51	3,25	3,20	3,09
$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\$	Ana in º	ber.	3,98	20, 60, 20, 60, 20, 60,	3,70	3,70	3,70	3,70	3,57	3,45	3,30	3,30	3,17
	Mol-Gew.		349,8	363,8 8,83,8	377,8	8,77,8	877,8	877,8	391,9	405,0	423,6	423,6	440,7
	Summenformel		C ₁₉ H ₂₃ O ₃ N·HCl	$C_{20}H_{25}O_3N\cdot HCI$	$C_{21}H_{27}O_3N\cdot HCI$	$\mathrm{C}_{21}\mathrm{H}_{27}\mathrm{O}_3\mathrm{N}\cdot\mathrm{HCl}$	$\mathrm{C_{21}H_{27}O_{3}N\cdot HCI}$	$\mathrm{C}_{21}\mathrm{H}_{27}\mathrm{O}_{3}\mathrm{N}\cdot\mathrm{HCl}$	$C_{22}H_{29}O_3N\cdot HCI$	$\mathrm{C}_{23}\mathrm{H}_{31}\mathrm{O}_{3}\mathrm{N}\cdot\mathrm{HCI}$	$\mathrm{C}_{25}\mathrm{H}_{25}\mathrm{O}_{3}\mathrm{N}\cdot\mathrm{HCl}$	$\mathrm{C}_{25}\mathrm{H}_{26}\mathrm{O}_{3}\mathrm{N}\cdot\mathrm{HCl}$	$\mathrm{C}_{26}\mathrm{H}_{27}\mathrm{O}_{3}\mathrm{N}\cdot\mathrm{HCl}$
	\mathbb{R}_{1}		$-\mathrm{C_2H_5}$	$-\mathrm{C}_{\mathrm{s}}\mathrm{H}_{\mathrm{r}}(\mathrm{n})$ $-\mathrm{C}_{\mathrm{c}}\mathrm{H}_{\mathrm{r}}(\mathrm{iso})$	$-C_3H_7$ (iso)	$-\mathrm{C_4H_9}\left(\mathrm{n}\right)$	$-\mathrm{CH} \underbrace{\mathrm{C_2H_3}}_{\mathrm{CH_3}}$	$-\mathrm{CH_2}\mathrm{-CH}$	$-C_{\mathbf{s}}H_{11}\left(n\right)$	$-\mathrm{CH}_2 - \mathrm{CH}_2 - \overset{\overset{\cdot}{}}{\mathrm{C}} - \mathrm{CH}_3$	$-\mathrm{CH} \underbrace{\mathrm{CH}_3}_{(\mathrm{CH}_2)_5} - \mathrm{CH}_3$	$-\mathrm{CH_2}\!-\!(\mathrm{CH_2})_{\theta}\!-\!\mathrm{CH_3}$	$-\mathrm{CH_2}\mathrm{-(CH_2)_6}\mathrm{-CH_3}$
Tabelle 1 Benzilsäure-β-dial	R		-CH3		-C ₂ H _r	-CH3	-сн	-CH3	$-\mathrm{CH_3}$	—CH3	$-\mathrm{CH_3}$	CH3	$-\mathrm{C_2H_5}$
Tabelle 1 Benzilsät	Nr.		II		Δ	IV	VIII	VIII	IX	×	IX	ХШ	XIII

Tabelle 1 (Fortsetzung)

					Analyse	yse		
Nr.	ಜ	$ m R_1$	Summenformel	Mol-Gew.	in % N ber. ge	% N gef.	Fp. °C	Bemerkungen
XIV	C ₂ H ₅	CH ₃ (CH ₂) ₅ —CH ₃	$\mathrm{C_{56}H_{27}O_{3}N\cdot HCl}$	440,7	3,17	3,11	102-104	fettartige Kristalle
XV	$-\mathrm{CH}_{3}$	-CH ₂ -CH ₂	$C_{26}H_{27}O_3N\cdot HCl$	440,7	3,17	3,18	172-174	farblose Nadeln
XVI	-СН3	-CH ₂ -(CH ₂) ₂ -	$C_{26}H_{29}O_3N\cdot HC1$	454,7	3,07	3,15	106-108	farblose Nadeln
XVII	-CH3	-CH ₂	$C_{28}H_{27}O_{3}N\cdot HCI$	461,5	3,03	2,96	156-158	farblose Nadeln
XVIII	—СН ₃	-СН	$\mathrm{C_{30}H_{29}O_{3}N\cdot HCl}$	487,7	2,86	2,79	138-140	farblose Nadeln
XIX	- C ₂ H ₅	-CH ₂	$\mathrm{C}_{25}\mathrm{H}_{27}\mathrm{O}_3\mathrm{N}\cdot\mathrm{HCl}$	440,7	3,17	3,20	148-150	hygroskopische, farblose Nadeln
XX	$-\mathrm{C_2H_5}$	-CH ₂ -CH ₂	$\mathrm{C}_{26}\mathrm{H}_{29}\mathrm{O}_{3}\mathrm{N}\cdot\mathrm{HCl}$	454,7	3,07	3,10	152-154	hygroskopische, farblose Blättchen

	Bemerkungen	farblose Nadeln	hygroskopische Nadeln farbiose Nadeln	farblose Nadeln	farblose Blättchen	farblose Nadeln	farblose Nadeln	$\mathbf{hygroskopisch}$	farblose Nadeln	farblose Nadeln
	Fp. °C	 	140—142 h	110-112 fa	98-100 fa	108-110 fa	112-114 fa	4 86—96	172—174 fs	184—186 f s
	Analyse in % N er. gef.	· · · · · · · · · · · · · · · · · · ·	8,33 7,59		5,75	6,05	5,60	5,73	5,31	4,70
	Ans in ' ber.	8,86	8,14	5,78	5,78	5,98	5,64	5,64	5,22	4,73
$egin{array}{l} { m R} & { m I} { m II} & { m III} & { m IIII} & { m IIII} & { m IIII} & { m IIII} & { m IIIII} & { m IIII} & { m IIIII} & { m IIIIII} & { m IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	Mol-Gew.	158,0	172,0 186,1	242,3	242,3	234,2	248,3	248,3	268,3	296,4
	Summenformel	C ₅ H ₁₂ CIN · HCI	C,H ₁₄ CIN · HCI C,H ₁₆ CIN · HCI	$C_{11}H_{24}^{2}CIN\cdot HCI$	$C_{11}H_{24}CIN\cdot HCI$	$C_{11}H_{16}CIN\cdot HCI$	$C_{12}H_{18}CIN\cdot HCI$	$C_{12}H_{18}GIN\cdot HCI$	$C_{14}H_{16}GIN\cdot HCI$	$C_{16}H_{16}CIN\cdot HCI$
	\mathbb{R}_1	$-C_2H_5$	- C ₃ H ₇ (180) C ₄ H ₆ (180)	-CH2-(CH2)6 · CH3	-CH (CH ₂) _s -CH ₃	$-\mathrm{CH_2}\mathrm{-CH_2}$	$-\mathrm{CH_2}-(\mathrm{CH_2})$	$-\mathrm{CH_2}\mathrm{-CH_2}$	-cH ₂	-CH C,H,
minoalky	R	-CH3	CH,	-CH3	CH3	CH3	-CH3	-C2H5	—CH3	-CH3
Tabelle 2 Dialkylaminoalk	Nr.	IXX	XXIII	XXIV	XXX	XXVI	XXVII	XXVIII	XXX	XXX

21 J. prakt. Chem. 4. Reihe, Bd. 35.

trennung ein. Es wurde unter Rühren noch weiter erhitzt, sodann wurde erkalten gelassen. Die Benzolschicht wurde dekantiert. Die zurückgebliebene schwere Ölschicht wurde unter Rühren langsam mit 35 ml Thionylchlorid versetzt. Es trat unter Erwärmung sofort eine lebhafte Reaktion ein. Durch Kühlen wurde die Reaktion gemäßigt, sodann wurde auf dem Wasserbade noch eine Stunde lang erhitzt. Nach Erkalten erstarrte alles zu einem dicken Kristallbrei. Der Kristallbrei wurde mit Äther verrührt, abgesaugt, rein weiße Kristalle von β -Methyl- β -benzylamino-äthylchlor-hydrochlorid. Ausbeute: etwa 88 g, Fp.: $108/110\,^{\circ}$ C, durch Lösen in Isopropanol und Fällen mit Äther lassen sich diese umkristallisierten, was nicht notwendig ist. Die erhaltenen Kristalle wurden sofort weiter umgesetzt.

44 g des so erhaltenen β -Methyl- β -benzylamino-äthylchlor-hydrochlorids wurden in Wasser gelöst, die Lösung mit 2 n Natronlauge alkalisiert und das ausgefallene Öl mit Äther ausgeschüttelt. Der Äther wurde mit wasserfreiem Natriumsulfat getrocknet und abdestilliert. Das zurückgebliebene Öl wurde in eine Lösung bzw. Suspension von 45 g Benzilsäure in 250 ml Isopropanol gebracht und zwölf Stunden unter Rückfluß gekocht. Die erhaltene klare Lösung wurde zuerst mit 20 ml Äther versetzt, wobei sich Trübstoffe abschieden, von diesen wurde über einen Faltenfilter klar filtriert und das Filtrat mit 150 ml Äther versetzt, wobei sich schöne farblose Nadeln von Benzilsäure-(β -methyl- β -benzylamino-äthyl)-ester-hydrochlorid abschieden. Fp.: 166/168 °C, aus Isopropanol und Äther, umkristallisiert: 174/176 °C. Ausbeute 82 g.

```
C_{24}H_{25}O_3N-HCl (411,7) ber.: C 69,90; H 6,31; N 3,39; Cl 8,61; gef.: C 70,12; H 6,35; N 3,45; Cl 8,73.
```

Analog wurden unter Verwendung verschiedener β -Methyl-(bzw. Äthyl-)- β -alkylaminoäthylchloride entsprechend neue Benzilsäureester erhalten, deren Eigenschaften in Tab. 1 angegeben sind. Einige neue β -Methyl- β -alkylaminoäthylchloride konnten als gut kristallisierende Hydrochloride gefaßt werden. Ihre Eigenschaften sind in Tab. 2 (XXI-XXX) angegeben.

Berlin-Zehlendorf, Privatforschungslabor, Jänickestr. 13.

Bei der Redaktion eingegangen am 21. Dezember 1966.